x+x*1.05+x*1.05^1+x*1.05^2+x*1.05^3+x*1.05^4+x*1.05^5=1000

Simple and best practice solution for x+x*1.05+x*1.05^1+x*1.05^2+x*1.05^3+x*1.05^4+x*1.05^5=1000 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of you

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for x+x*1.05+x*1.05^1+x*1.05^2+x*1.05^3+x*1.05^4+x*1.05^5=1000 equation:



x+x*1.05+x*1.05^1+x*1.05^2+x*1.05^3+x*1.05^4+x*1.05^5=1000
We move all terms to the left:
x+x*1.05+x*1.05^1+x*1.05^2+x*1.05^3+x*1.05^4+x*1.05^5-(1000)=0
Wy multiply elements
x^2+x^2+x^2+x^2+x^2+x+1.05x-1000=0
We add all the numbers together, and all the variables
5x^2+2.05x-1000=0
a = 5; b = 2.05; c = -1000;
Δ = b2-4ac
Δ = 2.052-4·5·(-1000)
Δ = 20004.2025
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(2.05)-\sqrt{20004.2025}}{2*5}=\frac{-2.05-\sqrt{20004.2025}}{10} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(2.05)+\sqrt{20004.2025}}{2*5}=\frac{-2.05+\sqrt{20004.2025}}{10} $

See similar equations:

| 2(c+1)=14 | | 16^3x-5=1000 | | 16^3x-5=20 | | 135°,35°e=A | | 4x+45=149 | | √3x-11=7 | | 4/5x+6=-1x-52/5 | | 0.5x-0.9=1.6+0.25x | | x-5/7=x-2/3 | | 5x²+20=3x²+38 | | 0=-288/x,x | | 4/18+3/18+n/18=1 | | 3x+12=4x-36 | | 1/2(1/2+6)=5/4(x-6) | | 4x-47=2x-31 | | Xx.6=5000 | | 10^2x-31^x+25=0 | | Y=-1.14+b | | X+1.5x=20.83333333333333 | | D4+5d3+6D2+-4D+-8=0 | | X+1.5x=65,000 | | X+.07x=208.65 | | 4^x-10×2^x+16=10 | | 14/25=z/5 | | 8x^2+28x=480 | | 35°=x | | 2=6q-6 | | 4x3=6x | | 4x3=60x | | 6x=3x+150 | | 9/2+(40)10.8=i | | (4x+6)+(6x+4)=45 |

Equations solver categories